If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+55x+25=0
a = 10; b = 55; c = +25;
Δ = b2-4ac
Δ = 552-4·10·25
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(55)-45}{2*10}=\frac{-100}{20} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(55)+45}{2*10}=\frac{-10}{20} =-1/2 $
| (4x+1/4)=(8x+1/2) | | (4x-5)+7x=(9x+17) | | (-57+4x)+(x-3)+(3x)=180 | | -1/4r=-2 | | (9x-5)+8x=(20x-32) | | 3n^2-132=-4n | | 20x17=97 | | 148=36x+40 | | 18x+x=110 | | (-5x-9)+(-4x-2)+(-1-7x)=180 | | (5x+3)+8x=(15x-7) | | 3+2x+1=20 | | 1.4b-11.2=2.8 | | 67x+22x2-35=0 | | 3x-0.5x=(8-0.25x)-(3-0.75x)-0.5x | | 3(x+5)-2x=17-x | | x+(x+34)+(2x+48)+90=360 | | 5x-9=7+4x/8 | | 3x+0.75x=(8-0.25x)-(3-0.75x)+0.75x | | 3x+0.75=(8-0.25x)-(3-0.75x)+0.75 | | 23=5(1+4m)-2m | | 2x+1=4x=4x-11 | | 3x=2(1.4) | | 1/6(m-9)=1/3 | | 2x^-17x+16=0 | | 8+t=6 | | 7x=56.000 | | 4r^2-26r-140=0 | | a=20(.99988)^5400 | | 36=4.5x | | 12=4(c+2) | | 3=1.035^t |